Section 2--Operating Policies Of Effective Maintenance

HOME | FAQ | Books | Links


AMAZON multi-meters discounts AMAZON oscilloscope discounts


This section covers basic policies for the operation of a maintenance engineering department. While many of these policies overlap and are interdependent, they may be grouped in four general categories:

  1. Policies with respect to work allocation
  2. Policies with respect to work force
  3. Policies with respect to intra-plant relations
  4. Policies with respect to control

POLICIES WITH RESPECT TO WORK ALLOCATION

To Schedule or Not to Schedule?

It is generally accepted that, in any maintenance department where there are more than 10 men and more than two or three crafts, some planning, other than day-to-day allocation of work by foremen, can result in improved efficiency. As the size of the maintenance organization increases, the extent to which work planning can be formalized and the amount of time that should be spent on this activity are increased. There should be only as much planning as necessary for maximum overall efficiency so long as the system costs less than the cost of operating without it.

How Much Scheduling?

There are practical limitations to any scheduling system. A very detailed schedule that becomes obsolete after the first hour or two of use because of emergencies is of little value. If, however, actual performance indicates from 60 to 80 percent adherence during normal operation, the value of the schedule is real. Justification of any scheduling system requires proof of its effectiveness in dollars saved. Where some form of incentive system or work measurement exists, such proof is readily available. But in most maintenance departments no such definitive method is available and the only criteria of measurement are overall trends in maintenance costs and quality of service.

Some aspects to be considered in arriving at a sound work-scheduling procedure are:

Work Unit. Most detailed schedules are laid out in terms of man-hours or, if standard times are used, fractions of hours. Other scheduling systems use a half man-day as a minimum work unit.

Others may use a man-day or even a man-week as a basis.

Size of Jobs Scheduled. Some work-scheduling systems handle small jobs as well as large ones.

Others schedule only major work where the number of men and the length of time involved are appreciable.

Percent of Total Work Load Scheduled. Although in some cases all work may be scheduled, the most effective systems recognize the inability of any maintenance engineering department to anticipate all jobs, especially those of an emergency nature, and do not attempt scheduling for the entire work force. A portion of the available work force is left free for quick assignment to emergency jobs or other priority work not anticipated at the time of scheduling.

Lead Time for Scheduling. Lead time for scheduling, or the length of time covered by the schedule, is another variable to be considered. Some scheduling systems do not attempt to cover break down repairs and are limited to the routine preventive maintenance and to major work that can be anticipated and scheduled well in advance. In these cases a monthly or biweekly allocation of man power suffices. In most instances, however, a weekly schedule with a 2- or 3-day lead time results in good performance, yet is sufficiently flexible to handle most unexpected work. In extreme situations a daily schedule with a 16- to 18-hr lead time may be necessary to provide the necessary control. A more workable solution for this situation, however, involves use of a master schedule for a minimum of 1 week with provision for modifying it daily.

Selection and Implementation of a Scheduling System

Flow-of-Work Requests. Before any formalized scheduling program can be initiated, the method of requesting work from the maintenance department should be formalized. This request may take the form of a work description or job ticket, listing manpower or equipment requirement, or it can be in the form of a work sheet on which the same type of information is accumulated by either verbal or written communication. Regardless of the form this information takes, it must be routed to one central point if a scheduling system is to be used. In a small plant this can be the shop foreman, the maintenance superintendent, or the plant engineer. In a larger maintenance department it should be through a staff individual or group.

The amount of information on the work request depends considerably upon the type of talent used in the scheduling group. If the individual charged with planning is completely familiar with the job requirements and can determine the craft manpower involved, the necessary equipment, and any other information required for scheduling, a summary of the jobs will suffice. On the other hand, where complexity of work is such that it is practically impossible for any individual to have this information, or if the person charged with scheduling does not have the training necessary to analyze the work, then the information on the work request must be presented in more detail. The number of man-hours required, by craft, the timing, the relation between crafts, the location and availability of parts and equipment, and any special requirements concerning coordination with production schedules or personnel should be included.

In addition to job information required for planning, it is equally important to have a feedback on actual performance in terms of notification of completion and actual time consumed, by craft. This may be incorporated in the work-request system, but provision must be made for channeling this information back to the scheduling center. The scheduling system should also provide for work scheduled but not completed becoming a part of the work backlog. As such, it is considered, along with new work, for new scheduling.

Coordinating and Dispatching. In the execution of an effective scheduling system it is necessary to compromise with the practical considerations of getting the work done, and done economically. If a foreman guided his craftsmen and himself on the assumption that the job must be completed at the exact time he had estimated and then continued to assign work on the basis of his estimate of the time necessary, it is obvious that confusion, incomplete work, and idle craft time would result. A formal schedule, issued weekly and followed blindly, would have the same effects. Instead, the schedule should be used as a guide, and modifications can be made as needed. Rapid communication of such modifications to the men responsible for carrying them out is essential to the success of a work schedule.

It is also essential that any changes or unexpected work for which provision has not been made in the schedule be funneled through the dispatch center. Usually the dispatch center can incorporate this type of work more efficiently than is possible by random selection of the nearest craftsmen or injection of higher authority into the picture.

Determination of Priority. In any maintenance organization which is efficiently manned, the work load, in terms of quantity or timing, exceeds the availability of men and/or equipment. For this reason the problem of defining the order in which the work is to be carried out, or establishing priority, exists and is an important factor in scheduling. In a small plant with one operating department and a small maintenance organization, establishment of priorities may amount to casual discussion between maintenance and production. However, as the plant grows and the maintenance department is called upon to provide service to more than one production department, the problem of equitable and efficient priority assignment becomes more involved. One of the most serious problems in maintaining good relations between maintenance and production departments is in this sphere. Too frequently personalities, working conditions, accessibility, or geographic location with respect to central shops influence the order of work assignment. This may decrease the overall efficiency of the plant.

The means for determining work priority figures most importantly in the establishment of a work scheduling system. On the surface a solution to this problem would reserve decisions concerning priorities to an individual who is in position to judge the effect on overall plant performance. In a plant of any size, it is usually most effective to handle such decisions at a lower level of management, with the plant manager having the final say when no decision as to priority of work can be reached.

A method which has proved satisfactory in many instances has been to assign a rough allocation of craft manpower to each production department, then to establish the priority of work within each department by consultation with its supervision. When it is necessary to vary the allocation of men, this should be done by negotiation between production departments to arrange a mutually agreeable exchange. If such a reallocation cannot be concluded, as a last resort the plant manager must make the decision.

Preventive vs. Breakdown Maintenance

Preventive maintenance has long been recognized as extremely important in the reduction of maintenance costs and improvement of equipment reliability. In practice it takes many forms. Two major factors that should control the extent of a preventive program are first, the cost of the program com pared with the carefully measured reduction in total repair costs and improved equipment performance; second, the percent utilization of the equipment maintained. If the cost of preparation for a preventive-maintenance inspection is essentially the same as the cost of repair after a failure accompanied by preventive inspections, the justification is small. If, on the other hand, breakdown could result in severe damage to the equipment and a far more costly repair, the scheduled inspection time should be considered. Furthermore, in the average plant preventive maintenance should be tailored to fit the function of different items of equipment rather than applied in the same manner to all equipment. Key pieces of equipment in many other integrated manufacturing lines are in the same category. Conversely, periodic inspections of small electric motors and power transmissions can easily exceed the cost of unit replacement at the time of failure.

Indeed, a program of unit replacements can result in considerably lower maintenance costs where complete preventive maintenance is impractical. In a plant using many pumps, for instance, a pro gram of standardization, coupled with an inventory of complete units of pumps most widely used, may provide a satisfactory program for this equipment. This spare-tire philosophy can be extended to many other components or subassemblies with gratifying results.

Sometimes, instead of using a centrally administered formal preventive program, qualified mechanics are assigned to individual pieces of equipment, or equipment groups, as mechanical custodians. Operating without clerical assistance and with a minimum of paperwork, these men, because of familiarity with equipment and ability to sense mechanical difficulties in advance, can effectively reduce maintenance costs and breakdowns. These compromise devices can frequently be used to greater advantage, even in plants where equipment is not in continuous operation and a more comprehensive preventive program might be set up.

Periodic shutdown for complete overhaul of a whole production unit, similar to the turnaround period in oil refineries, is another method of minimizing breakdowns and performing maintenance most efficiently. Unfortunately, this is a difficult approach to sell to management of a 7-day, around the-clock manufacturing plant not accustomed to this method.

One of the most effective methods of tempering ideal preventive maintenance with practical considerations of a continuous operation is that of taking advantage of a breakdown in some component of the line to perform vital inspections and replacements which can be accomplished in about the same time as the primary repair. This requires recording of deficiencies observed during operating inspections and moving in quickly with craftsmen and supervision prepared to work until the job is done. Production supervision usually can be sold the need for a few more hours' time for additional work with repair of a breakdown much more easily than they can be convinced of its necessity when things are apparently running smoothly.

Preventive Engineering

One of the most important tools in minimizing downtime, whether or not a conventional preventive maintenance program is possible, is called "preventive engineering." Although this would appear to be the application of common sense to equipment design maintenance engineering, it is a field which is often neglected. Too often maintenance engineers are so busy handling emergency repairs or in other day-to-day activities that they find no opportunity to analyze the causes for breakdowns which keep them so fully occupied. While most engineers keep their eyes open to details such as better packings, longer-wearing bearings, and improved lubrication systems, true preventive engineering goes further than this and consists of actually setting aside a specific amount of technical manpower to analyze incidents of breakdown and determine where the real effort is needed; then through redesign, substitution, changes, and specifications, or other similar means, reducing the frequency of failure and the cost of repair.

This can be handled by a special group acting as a cost-reduction unit, or it can be included as one of the functions of the maintenance engineer. Some companies can support groups that actually develop and test equipment to promote more maintenance-free operation. The aid of equipment suppliers can be solicited in this same effort. It should be emphasized, however, that this type of program requires intelligent direction to ensure that time and money are expended in the areas where the most return is likely. A particular pump, operating under unusual conditions, shows a high incidence of failure but because of the simplicity of repair has a low total maintenance cost, and if it were the only one of its type in the plant, an intensive investigation for maintenance-cost reduction would be difficult to justify. On the other hand, a simple component such as a capstan bearing on a spinning machine, although having a low unit-replacement cost, can fail so often and on so many machines that the total cost per year would run to many thousands of dollars. Here an investigation concentrated on the reason for failure of one unit could be extremely profitable.

Effective preventive engineering can result only when it is recognized as an independent activity of a research nature that cannot be effectively sandwiched into the schedule of a man who is occupied with putting out fires.

POLICIES WITH RESPECT TO WORK FORCE

Own Work Force or Outside Contractors?

The primary factor in deciding whether to use an outside contractor is cost. Is it cheaper to staff internally for the performance of

1. The type of work involved,

2. The amount of work involved, and

3. The expediency with which this work must be accomplished?

In studying these relative costs it is not sufficient to consider the maintenance cost alone. The cost to the company, including downtime and quality of performance, must also be considered.

To establish, supervise, and maintain a group of men in any specific craft means a continuing expense over the wages paid the men. In general, this total cost must be balanced against the estimated cost for the same work performed by an outside contractor who must, in all probability, pay higher wages, carry the overhead of his operations, and realize a profit. By analysis of the work load and evaluation of the relative costs of its performance by plant maintenance or outside contractors, criteria for this division of work can be evolved. This analysis must include other factors such as time required, availability of the proper skills with outside contractors and in some instances, the possibility of process know-how leakage if contractors are employed. In deciding whether to set up your own shop or rely on contractors, the degree of skill required in the particular craft is important. If this requirement is relatively low, and supervision and facilities of some other craft can be expanded to include it, this step can often be profitable. If, on the other hand, the degree of skill is high or the necessary equipment complex or costly, there must be a much greater amount of work for this craft before such a shop can be justified.

Once the basic craft types have been established for the maintenance organization, the question of the personnel strength of these crafts is also a function of the amount of work assigned to outside contractors. In general it is wise to staff the in-plant force so that it can handle a work load slightly above the valleys in anticipation that some of the peak work periods can be deferred. Outside con tractors may then be used for the normal peaks and for the unusually high loads resulting from major construction or revision projects.

The preceding discussion has omitted two elements which may have an arbitrary effect on the practical distribution of work between inside and outside labor. If local manpower and contractors are scarce, expeditious work performance often dictates maintaining a much larger and more diversified maintenance group. The use of outside contractors may then be limited to major projects where it is feasible to use imported labor for an extended time, or to highly specialized work performed by a factory representative or a contractor specializing in this work as a job unit.

The other factor which may interfere with the optimum formula is the attitude of the labor organizations involved. This is a problem which varies not only among geographical areas, but frequently among plants in the same area. In some instances the plant union is militant at the prospect of any work being performed within the plant by nonunion workers or by members of another union. In other plants an understanding is reached, generally limiting contractor participation to construction or major revisions.

Other plant unions recognize factors which permit considerable latitude in the use of outside contractors.

For instance, the union may recognize that the amount of concrete and masonry work will not justify more than a minimum repair crew and that any new work or major repair in this line would be more economically handled by an outside contractor. Many unions recognize the need for employment of con tractors in such fields as refrigeration, window washing, and steeplejack services. An optimum solution for this problem is more likely to result if the union and maintenance supervision arrive at a mutual understanding of the problem in advance. However, this is often difficult, and failure may occasionally necessitate establishment of uneconomical crafts and work allocation for the in-plant work force.

On the other hand, the situation may be reversed, with outside craft unions refusing to perform in-plant work unless granted exclusive rights to all the work or at least to certain clearly defined portions of the work. This presents an entirely different problem and generally favors the expansion of the in-plant group, with respect to both numbers and crafts involved, so as to minimize the use of contract labor, limiting its use to major new construction.

Shift Coverage In the process industries, where plants frequently operate continuously-three shifts, 7 days a week-some of the maintenance load can be separated and handled simply. Maintenance of buildings and grounds, for instance, is the same for three-shift operations as with one shift. For the rest, however, special consideration is required to provide the service necessary for optimum production.

Not only will lubrication and breakdown repairs continue around the clock, but other items such as waste collection, janitor service, elevator maintenance, and fork-truck maintenance must be considered in a different light from the same services in a plant on a one-shift basis. The two extremes in providing maintenance for continuous operation are to provide full coverage during all hours that the plant is in operation or to maintain day coverage only, letting the plant shift for itself during other periods or to accept minimum essential service on call-in, overtime basis. The optimum arrangement is something in between, depending a great deal upon circumstances in an individual plant.

In considering the staffing of a maintenance department to cover more than one-shift operation, many factors are involved.

Efficiency of the Worker. Although exception may be taken to this statement, it is generally con ceded that a man who is not paced, by either the equipment he operates or the performance of a large group of individuals, is not so efficient on the off shifts as during the day. This loss of efficiency can be attributed to many causes. First, a man is normally happier living a normal life, which in most communities includes sleeping at night and working days. Most of his out-of-plant relationships are with people living this sort of life. The activities of his wife and children are normally concentrated in the daylight hours. All these factors make for conflict in an attempt to reconcile the schedule of the shift worker with that of his family and friends.

Another cause for a loss in efficiency is the fact that usually the work of a maintenance man must be coordinated with production activity. Even though every attempt is made to plan this activity, unexpected variances occur which call for changes in coordination with production. Since most of these require decisions at supervisory levels normally at work during the day, delays frequently occur, resulting in a loss of efficiency.

While some types of operations may justify both production and maintenance supervision on the scene at full strength around the clock, usually only the supervision necessary to maintain operations on an essentially static basis is available during the off shifts. Around-the-clock maintenance must be weighed against the reduction in efficiency resulting from the absence of adequate authority. Efficiency may also be reduced by the need for unexpected supplies, tools, or equipment which can be procured only from outside suppliers during regular working hours. The alternative may be improper substitutions or costly on-the-spot fabrication, either of which will reduce maintenance efficiency.

There are other factors which argue for around-the-clock maintenance, such as the location of a plant with respect to the homes of the craftsmen, which may make call-in impractical. In other cases a particular production unit may be so critical as to make any maintenance delay intolerable, or a breakdown may create a safety hazard so grave that maintenance coverage must be provided, regard less of its economic justification.

Experience indicates that minimum downtime and lowest maintenance cost result from using the least coverage on the off shifts that can be tolerated from the standpoint of safety and lost production time. Adequate craft supervision should be provided where justified, or this responsibility should be transferred to some other member of supervision. As much work as possible should be handled on the day shift. The cost of call-in overtime should be compared with the cost of scheduled coverage, including the cost of delays resulting from call-in. The cost of finishing jobs of more than 8-hr duration should include comparison of cost of holdover overtime with that of a second or third shift. The amount of routine work that can be assigned to fill out the time of men on off shifts and the amount of application of the men to this work that can be reasonably expected is another factor.

Where both centralized and decentralized maintenance groups are available, men on the off shifts, with the possible exception of such specialized crafts as electricians and instrument men, should be from the decentralized group.

It is sometimes possible to use a split-day-shift schedule with one crew working Monday through Friday and another on a Wednesday through Sunday schedule to extend day coverage over a 7-day period. In some instances it may be more economical to have a large day crew, an intermediate after noon and evening shift, and a skeleton midnight shift.

The best plan for any plant can be determined only after due consideration of all the factors mentioned above and any other special considerations peculiar to the plant. This plan may have seasonal variation or may change with the plant's economic situation.

Centralization vs. Decentralization

The subject of centralized vs. decentralized maintenance has elicited a great deal of discussion over the past few years, with strong proponents and good arguments on each side. Advantages of a centralized maintenance shop are:

1. Easier dispatching from a more diversified craft group

2. The justification of more and higher-quality equipment

3. Better interlocking of craft effort

4. More specialized supervision

5. Improved training facilities

The advantages of decentralized maintenance are:

1. Reduced travel time to and from job

2. More intimate equipment knowledge through repeated experience

3. Improved application to job due to closer alliance with the objectives of a smaller unit-"production mindedness"

4. Better preventive maintenance due to greater interest

5. Improved maintenance-production relationship

In practice, however, it has been found that neither one alone is the panacea for difficulties in work distribution. Often a compromise system in which both centralized and decentralized maintenance coexist has proved most effective. For handling major work requiring a large number of crafts men, the centralized maintenance group provides a pool which can be deployed where needed. To provide the same availability in a completely decentralized setup would mean staffing at dispersed locations far in excess of optimum needs for each area, plus difficulty in coordinating on the big job.

The installation of some of the costly and specialized equipment that is needed for some of the crafts can seldom be justified at other than a central location. On the other hand, a great deal can be accomplished in minimizing downtime by having a decentralized group which can function "Johnny-on the-spot" and give immediate attention to minor maintenance problems. Familiarity with a smaller sphere of production equipment through experience is almost certain to improve the performance of craftsmen. In general, good overall efficiency will result from the decentralization of a specific number of the less specialized crafts in area shops, augmented by minimum personnel of specialized crafts to provide emergency service in their field. An improvement over this would be the utilization of a general craftsman who can perform the work of many crafts in a decentralized group. This, of course, presents a problem with organized labor and will normally require agreement from the union.

It also limits the skill that can be expected of such men, since there are few men who can become experts in all the crafts.

It is suggested that, rather than assign an arbitrary number of people to a decentralized facility, a comprehensive study be made of the type of service required to sustain production in the area under consideration, and that from this service be separated that which can be performed by a general area mechanic. The incidence of this type of work and the resulting area mechanic work load should then be determined from some factual records, and a sufficient number of men assigned to handle this work load.

The preventive-maintenance program can provide a reservoir of work for the maximum utilization of this decentralized group during periods of low breakdown or modification maintenance activity.

Recruitment

Unfortunately policies for recruitment of personnel for the maintenance department are controlled a great deal more by local conditions and expediency than by the ideal approach. This in itself is a major argument for maintaining as stable a work force as is economically practical.

Where the union contract makes job posting mandatory, the problem of getting men who are or will eventually be satisfactory craftsmen can be difficult. All too often, since this particular problem is only a small part of the overall management-union relationship, little effort is made to arrive at a better method of filling vacancies among the crafts. Many maintenance departments in union plants have become resigned and make the best of the candidates turned up through the bidding procedure, usually selected on a seniority basis. With good union-maintenance supervision relationships supplementary agreements or understandings may be reached which will considerably improve the type of candidate considered. Age, aptitude, past experience, educational background, and general level of intelligence are frequently considered in some mutually acceptable screening technique. An accepted apprentice training program with recognized entrance qualifications will generally create a source of competent personnel.

In plants where there is no problem of union resistance, local conditions and the makeup of the production work force are the major factors in recruitment of maintenance personnel. Where many of the operations being performed on the production line are of a mechanical nature, the probability of securing competent recruits from production is greater than in the process industries, which do not generally attract the type of individual suited for maintenance. Availability of trained prospects out side the plant is naturally better in highly industrialized communities. The qualifications of candidates for maintenance work and methods for evaluation of applicants is a subject in itself. However, a few generalities can be made concerning the two types which make up the craft groups of a maintenance department. These two types are the untrained candidate, who enters at the bottom of the scale and receives his training while employed in the maintenance department, and the completely trained, skilled mechanic. In evaluating the untrained candidate, primary considerations should be age, mechanical aptitude, manual dexterity, and analytical ability. Some degree of self-assurance and stability of character is important. Also, the candidate's motivation for entering the crafts field should be thoroughly explored during interviews. It is preferable that this motivation be a real liking for the type of work rather than a desire for more money, security, prestige, or some other factor. In selecting trained applicants, age and education should carry less weight. Experience is most important in this case, as well as attitude and type of work he has done, but also regarding the quality of performance, teamwork potential, ability to carry out assignments without constant supervision, and his personal stability. Summarizing, policies with respect to the recruitment of maintenance personnel are con trolled largely by the conditions existing at a specific plant. Every device for the best selection of the available personnel should be employed, and the use of advanced techniques in testing, interviewing, and screening is recommended.

Training

There are several methods for training personnel in a maintenance department. The simplest and most effective is an established and recognized apprentice-training program. The details of such a program are available from many sources, but the most widely used is the apprentice-training program sponsored by the U.S. Department of Labor, Bureau of Apprentice Training. Usually the administration of this program is handled by a state organization which will provide all the necessary information, as well as assistance in adapting the program to an individual plant.

Many companies establish their own apprentice-training programs which are similar to this nationally recognized one. This requires considerably more preparatory work by the company but is not so widely recognized and therefore does not have the same appeal to the craftsmen as the national program. Administration of both systems requires about the same attention.

On the other hand, many plants have no formalized training for their craftsmen and depend entirely upon exposure, supervisory job coaching, and association with experienced workmen for their training. In between there is a whole range of possibilities, including such variations as "short-course" on-the-job programs, qualification and skill-development evaluation tests, promotional programs based on either formal or informal evaluations, and less detailed apprentice programs.

The factors that should influence the degree of formality of the training program are similar to those used to determine many other aspects of maintenance operations, i.e., size of the plant, attitude of the labor group, availability of skilled craftsmen, and the overall policy of management. A large plant can obviously afford to initiate and maintain a more elaborate training program than can a small plant. The lack of availability of skilled craftsmen increases the need and justification for better training.

Training programs have been installed with and without the support of organized labor, but in general, they are more effective with the wholehearted support of the crafts group, particularly if it is jointly administered by the company and the union.

Above all, the amount of formal training to be used must be based upon the value of the results.

It is not good management to have a training program for the sake of having a training program. A training program should result either in improved maintenance performance or in proper staffing of a maintenance department. The availability of some craft skills in certain areas or a change in methods and techniques may be such that the only means of providing the necessary skills is through a training program. Frequently, although a comprehensive program cannot be justified for all crafts, programs for individual skills are a necessity. These can be handled internally or in cooperation with an educational institution or an equipment supplier. Excellent examples of this treatment are the courses run by the suppliers of welding equipment, which make it possible to provide men with up-to-the-minute instructions on developments in welding techniques.

POLICIES WITH RESPECT TO INTRAPLANT RELATIONS

Participation by Maintenance Personnel in Selection of Production Equipment

In some plants one engineering department handles all phases of engineering activity from design through construction and maintenance. In the majority of plants, however, the construction of major facilities or addition of major equipment is engineered by a separate organization, reporting at a higher level, or by outside engineering contractors. The primary mission of these activities is to project pilot plant operations to production-scale facilities or to expand existing installations to meet increased production goals. Built-in ease of maintenance does not normally receive the same emphasis that would result from the same work done by people who are to be responsible for maintenance. Most progressive companies provide for representation from the maintenance group as well as from the production group in design and selection of new facilities. A trained maintenance engineer can draw upon his experience or that of his department in suggesting modifications or brands of equipment that will result in reduced maintenance cost after it is placed in operation. Good equipment histories on performance of existing facilities are invaluable in assisting this contribution to design and construction.

It is not meant to suggest that the maintenance engineer should attempt to control the design of new equipment. He should, however, be offered the opportunity to review designs and specifications carefully in order to predict maintenance problems and suggest modifications for reduced repair costs. If his recommendations are logical and well presented, they will usually be accepted, particularly when real savings can be demonstrated. All too often the maintenance department is handed a surprise package which can be a nightmare to maintain and quickly requires revision to make maintenance at all practical. This not only results in high maintenance costs but is extremely damaging to the morale of the department. In summary, the maintenance engineer can be of inestimable value to a design group, first, because of the performance records at his disposal and second, because of his ability to suggest changes reducing the maintenance problem.

Standardization of equipment, whether centralized for a multiplant company or delegated to the maintenance department in a single plant, is another factor to be considered in specifying equipment.

In this case, also, the maintenance engineering department should play a major part in policy formulation. A considerable reduction in maintenance costs can result from a sound standardization program by

1. Simplifying training of both operating and maintenance personnel

2. Increasing interchangeability of equipment

3. Decreasing capital tied up in spare-parts inventory

As with preventive maintenance, a poorly established or inflexible program of standardization can be an obstacle and can be obstructive and costly. Any program of standardization should provide for transition to improved equipment types as they are available and should take local vendor relationships into account.

Design and construction groups should provide the maintenance department with recommendations concerning spare-parts and preventive-maintenance programs received from equipment suppliers. The former group can transfer their contact with the supplier to the maintenance department with much better effect than is possible when the maintenance department is required to make the contact independent of the work that has gone before.

The use of a group called the "project board" has proved extremely successful in smoothing the way for any new engineering venture. This group functions as a clearinghouse for progress of the work and brings together all the activities that can be expected to have contact with the work during and after installation. The project board consists of a qualified member from each of the departments involved. For example, in an expansion of existing facilities this board might consist of a representative from production, two or more from design engineering, one from maintenance engineering, and a representative from the safety department. If, on the other hand, the project is one involving a new process recently developed by a research group, a member of this organization should be included on the board. In this way the transition to an operating production unit is much easier, since the project board normally is in existence until a successful plant demonstration has been made and tentative operating procedures established. This approach gives the maintenance department, as well as production, the opportunity to grow with the job and to suggest the modifications which familiarity with similar equipment makes possible and which make the final operation so much more satisfactory.

Authority to Shut Down Equipment for Maintenance

The authority of a maintenance department to dictate shutdown of production equipment for needed repairs is controversial and has contributed a good deal to the friction that sometimes exists between maintenance and production departments. In some plants the maintenance department does have this authority and it is generally recognized. In others there is no such prerogative and the decision rests entirely with production. Usually, and preferably, the decision is reached jointly.

Naturally, there are many areas in which the maintenance department has essentially unilateral authority, particularly in building repair, yard maintenance, upkeep of shops, etc. However, the primary responsibility for total manufacturing costs is usually that of a production department and so, therefore, is the ultimate control of production equipment availability. The maintenance department should have the complete confidence of production so that a recommendation for shutdown results in immediate consideration. A doctor has no authority to order medication or treatment for a patient if the patient refuses. However, the doctor's specialized training and knowledge are generally recognized, and once we retain him, it would be well to follow his advice. The same philosophy is applicable in the maintenance-production relationship.

Responsibility for Safety

Safety is one of the most important aspects of industrial management today. The maintenance department should play a large part in making its plant a safe one in which to work. Although general administration of the safety effort is usually delegated to a specialist group, the maintenance department is often the key to success of the program. Not only is it responsible for the safety of its own personnel, but by definition it also is responsible for providing mechanical safeguards and for maintaining equipment and services in safe operating condition. Because of this collateral responsibility, the safety function is often combined with maintenance in a small plant. In a larger plant there is a definite need for a separate staff group.

The problem of safety of personnel in the maintenance department is somewhat different from that of safety of production personnel. Although mechanical guarding and safe operating conditions can be maintained in the shops, most of the work performed outside the shop is of a nonrepetitive nature, frequently requiring operation of equipment with guards or other safety devices removed.

Safety in maintenance department activity, therefore, depends to a much larger extent on the individual safety performance of its men. In a production department where obvious hazards can be kept guarded and personnel instructed in performing a routine operation, programs and specific safety instructions are most effective. In the maintenance department, however, the craftsman must be taught to think safety and translate his thoughts into a multitude of situations without much help from prescribed rules.

Whether the responsibility for the safety program rests with a staff safety department or with the maintenance department, the work to be done must be performed by the maintenance group.

Standards for guards, grounding, bumping- and tripping-hazard elimination, warning signals, and safety devices must be closely followed. Installations of this type must be maintained in perfect operating condition. A maintenance department should not presume to ignore requests for work of a safety nature and must find the means for giving top priority to these jobs. Often the actual inspection of safety devices rests with the maintenance department. Where this inspection is a function of the safety department or production department, close liaison must be maintained with maintenance for the immediate correction of deficiencies.

During repair of equipment in production areas maintenance personnel must be continuously alert to the hazards they may be creating for themselves and less experienced personnel in the immediate area. Fire permits, lockout procedures, and warning signs must be used in this connection.

Possibility of tools or pieces of equipment falling and injuring others is always present. Protection must be provided from exposure to welding, sandblasting, and oil spillage. Electrical work is always accompanied by potential hazards and deserves special attention.

In conclusion, while the staff responsibility for safety may be part of the maintenance function in a small plant, usually it is preferable to have an independent safety department either reporting to top management or incorporated in the personnel department. Regardless of its staff responsibility for safety, the maintenance department in any plant has a direct responsibility for implementation of the safety program, and its supervision must recognize this and provide the means for its accomplishment.

Instrumentation

The question of responsibility of the maintenance department for instruments can best be answered by practical consideration of the problems peculiar to the plant involved. Instrument installation and maintenance theoretically should be considered in the same light as the addition of any other equipment. There are, however, several factors which make some other arrangement expedient, such as a separate department or assignment of this responsibility to the production department.

In a plant using relatively simple types of instruments their selection and maintenance is frequently a function of the electrical group. On the other hand, in some industries where instrumentation has been carried much further and includes knowledge of complex electronic components, particularly in fields of automation, instrumentation may be a separate plant department. In some industries instruments are the major tools of production personnel and smooth operation requires their intimate knowledge of the instruments involved. In this situation, except for major changes, the responsibility for instrument care is with the production department.

With the increased use and complexity of instruments the problem of providing trained personnel for selection and maintenance has also increased. Technical men must frequently be used in a maintenance capacity for effective service. Unless there are enough instruments to warrant staffing the maintenance department with this caliber of personnel, the responsibility may be best transferred to those technical personnel operating the plant.

POLICIES WITH RESPECT TO CONTROL

Communications

A starting point in analyzing the problem of communications and the types to be used is a study of the sort of information to be transmitted and the amount of detail involved through these three major channels:

1. Up through the supervisory organization

2. Down through the supervisory organization

3. Laterally across the same level of organization

Generally, all communications should be reduced to a minimum consistent with effective operation. It is also accepted that information should flow upward only as far as is necessary for effective action. Slower response frequently nullifies the value of higher-level judgment that might result from a flow of the information upward beyond this point. In addition, communication upward should be so handled that each level passes on only that information which is of value to the next level.

Horizontal channels of communication should also be controlled to limit information to that necessary for effective cooperation between various sections of the maintenance group. In a small plant having only two or three levels between first-line supervision and the department head, and where most transactions can be handled by telephone or word of mouth, there is little problem. As the plant gets larger, with more intermediate levels of supervision, more procedural formality and greater specialization of duties develop. This evolution should be accompanied by clearly defined limits of authority for independent action at each level, with "action" communication up from any level limited to that on decisions outside its authority. If a foreman has a question concerning his work that can be answered by his supervisor, there is no need to involve the superintendent or plant engineer in the transaction.

Copies of order or performance reports are too often distributed to people who ignore them or at best scan them briefly, with no thought of retention. Detailed information is frequently passed to top levels where it is meaningless unless summarized. It would have been better to transmit only the summary. Indiscriminate requirement for approvals of instruction sheets, order blanks, requisitions, and correspondence can also clutter channels of communication and delay action. This problem is characteristic of fast-growing organizations and should be reviewed periodically. Flow diagrams for all written instructions, reports, and approval systems are helpful in focusing attention on unnecessary steps which increase the work load on the supervisory and clerical organization and delay execution of the work.

This minimum flow should naturally be tempered by recognition of the natural desire of people to know what is going on around them, with respect to their own work, that of other departments, and the company as a whole. For this reason it is important to include provision for passing this type of information to the satisfaction of the personnel involved. In most attitude surveys among first- and second-level supervision more dissatisfaction is evident with the amount of this type of information than with that required for performance of their work. The morale of supervision, which in turn is frequently reflected in the morale of the hourly group, can be considerably improved by the proper dissemination of general information for its own sake, making them feel as though they belong.

There are at least two areas in the activities of a maintenance organization where effective use can be made of special advanced aids to communication. These are the transmission of work requests and job instructions from various sections of the plant to the proper coordinating group or work area, and the quick contact with personnel dispersed throughout a plant.

It is important that requests for maintenance work be promptly and accurately received at the dispatch center or at the individual shops. The advantages of written work requests should be thoroughly explored, since they can be justified at much lower levels of operation than is evident at first glance. When used, these written requests can be transmitted by courier or plant mail service.

Telephone orders are frequently used to initiate the work, with a written confirmation following. This introduces considerable chance for error in word-of-mouth instructions, and there is a tendency to neglect confirmation once the work is performed. This in turn results in difficulty in accounting and repair cost analysis.

The use of written job instructions for all work, while it may seem troublesome, is basic to the development of many other control devices, particularly those for accumulation of information used to assist in improving operations and in accurate distribution of the resulting costs. General, or blanket, authorizations are frequently sufficient for repetitive small items such as light-bulb replacement, routine lubrication, and miscellaneous valve packing, but even here, handling of these requests by operating departments will direct attention to trouble spots and allow more equitable distribution of accumulated charges.

A major problem in some organizations is keeping in touch with members of supervision and craftsmen dispersed over a wide area. The perfect solution appears to be a lightweight, pocket-size, continuously operating two-way radio in the hands of every member of the maintenance department.

The most common means of locating dispersed supervision is through a plant auto-call system. In a small plant this may be adequate, but as a plant grows and the system becomes more and more complex, with blacked-out areas developing, this method becomes slow and unreliable. If each member of supervision checks out of a central point to a predetermined area, the auto-call system can be augmented by other telephones, but maintenance problems are usually such that a foreman may go from one area to another on a route that is impossible to predetermine. Two-way radio on maintenance vehicles has been very successful for groups working in the open or in areas that are within sound of a parked vehicle. Radio becomes less effective where craftsmen are occupied inside a building, out of hearing from a vehicle-borne receiving unit. An individual paging unit about the size of a package of cigarettes which can be carried on the person at all times is available today. In its present stage of development, however, this device depends upon an induced current, necessitating special installations in each building covered. It has considerable value in compact, multistory plants, but where there are many smaller buildings through which the call system must operate the installation expense is rather high. Any maintenance department should consider the increase in supervisory efficiency that can be realized from quick contact with dispersed personnel and provide the best means that can be justified economically.

USE OF STANDARD-PRACTICE SHEETS AND MANUALS

There are many forms of standard-practice sheets, or standard job-instruction sheets, and instruction manuals used in maintenance departments. They are excellent devices for planning work, ordering materials, improving estimating accuracy, and training crafts personnel. Justification of cost of preparation and their ultimate effectiveness depend entirely on the particular problems of an individual plant.

A plant having a large number of identical machines or of machines having identical components which require a repetitive type of repair can justify more detailed standard-practice sheets than a plant with very little duplication of equipment or maintenance jobs. The need for standard-practice sheets also varies with the complexity of the repair and with the degree of skill and the experience of the men performing the work. Most equipment suppliers will provide excellent manuals which, although they do not cover all the detail found in a standard-practice sheet, cost little and provide much assistance for maintenance of the equipment. Every effort should be made to maintain a complete supply of these manuals available to the men directly involved in the maintenance of the equipment. These may be reproduced and divided to provide each craftsman with a copy if this seems advisable. A work measurement or incentive system based on summarized elemental standards makes some sort of standard-practice sheet a must.

Most repetitive repairs can be profitably studied for the best approach, and a standard procedure developed. A typical standard-practice sheet should include specifications for the tools required, the necessary parts and supplies, a sufficiently detailed print of the equipment, indicating the components with sufficient clarity for the craftsman to follow the instructions, a step-by-step procedure with complete notes to cover any unusual or critical steps, and a close approximation of the time required. The development of these sheets is time consuming and expensive, and rapidly changing conditions and equipment may make them obsolete quickly.

Electrical- and piping-layout drawings for the plant should be available to craftsmen and their supervision for quick appraisal in execution of their work. These should be kept up to date, and new work or changes in the field should be recorded by supervision in charge of the change on the master copy of the appropriate print. A great deal of time and expense can be saved by the availability of clear up-to-date drawings for use in planning repair, replacement, or modification of existing installations. This is particularly true of underground systems which cannot be easily traced.

Cost Control

The subject of cost control in the maintenance department is a complex and controversial subject.

While it is not intended in this section to go into details of cost-control systems or budgets, some generalizations can be made regarding cost-control techniques, cost indexes, and performance checks which may be found useful in establishing the overall cost policy of a maintenance organization.

Any indexes used for internal control should incorporate factors within the control of those people held accountable for performance. For instance, for the lower levels of supervision, man-hours per unit of work, per job, or per department maintained can be directly influenced by the efficiency of the men performing the work and are therefore good measures of performance at this level. At the maintenance superintendent level the overall cost of maintaining the plant in terms of the value of equipment maintained, or in terms of the goods produced or percent of operating time available, can be influenced by good planning, good engineering, and good management, and these broader indexes may be applicable.

Top management is generally interested only in that part of the total cost to manufacture which is chargeable to the maintenance department. It is not interested in high worker efficiency if poor engineering and poor planning result in higher overall cost, nor is it interested in an extremely low maintenance cost with respect to the value of installed equipment if, as a result, the total cost of manufacturing is increased. Good management in a maintenance department should provide such indexes as are needed to permit evaluation of the performance of the department internally and provide top management with the information they need to assess maintenance performance of this function as part of the big picture.

Some of the indexes that are commonly used are maintenance cost as a function of:

1. Value of the equipment maintained

2. Pounds produced

3. Total manufacturing cost

4. Total conversion cost

5. Power consumed

Some other useful presentations are:

The ratio of labor cost to material cost in maintenance work The comparison of man-hours used to the level of the activity of the plant Downtime of equipment expressed as a percent of total scheduled operating time Sometimes a formula, expressing a combination of two or more of the above relationships, is developed and accepted by a company as a more usable composite index. Some of these formulas take into consideration the value of the equipment, the rate of its utilization, and downtime charge able to repairs.

A few companies have established work-measurement programs where it is theoretically possible to set a definite standard for maintenance costs at varying levels of activity and then compare actual performance against this standard. This type of comparison can frequently be misleading if carelessly set up. It is possible for it to indicate excellent performance in spite of excessive overall maintenance costs. If properly administered and used for the purpose intended, such a standard can be extremely useful in maintenance management. Unfortunately, the overhead cost of most work measurement programs detailed enough to be useful for this purpose is high and can be justified only by a large plant or by an industry having many similar plant operations. In this case a study by an independent industrial engineering firm may be practical.

In general, maintenance-cost trends are more important than the cost for any one short length of time. Although high and low peaks may occur monthly, for instance, if the trend of an index is down ward, this change is more significant than the month-to-month variation. Most maintenance departments will find that no single index will be sufficient to evaluate their performance completely. A study of the trend of several indexes is more satisfactory.

Cost-Control Systems. In selecting its cost-control system maintenance engineering should con form to the system that is in use in the plant it serves. It may be expedient to adapt this system to the particular needs of the maintenance department, but the plantwide format should be used.

The purposes of a cost-control system include:

1. Equitable distribution of repair costs over the departments serviced

2. A source of information necessary for sound administration of the maintenance department

3. Compliance with legal requirements for taxes and earnings

4. A source of information for the plant accounting group in its function of recording and reporting the financial position of the plant

In establishing its cost-control system the maintenance group should keep these purposes in mind and solicit the cooperation of the accounting group in adapting the plantwide program to maintenance needs, eliminating as much detail and duplication of effort as possible. Hand data processing should be minimized by the use of modern business machines whenever this can be justified.

One of the most effective cost-control systems is the conventional job-cost method which accumulates expense items for labor, supplies, and services on a specific job number which, in turn, is the liability of a specific department. This accumulated charge, together with overhead and fixed charges, then provides the basis for distribution of cost by the accounting department.

In cost control, as with all performance records, it is well to remember that the actual cost of recording information at its source is small compared with the cost of further processing and analysis of the information. For this reason it is well to record information in considerable detail at the source but to scrutinize its further use and analysis carefully to ensure the most economical data processing system required for the cost-control plan in use. It is then possible to rearrange the processing to fit changes in cost-control systems without affecting the data-accumulation habits at the level of origin.

The subject of cost control is covered in more detail in another section. Regardless of the system selected it should be flexible enough to provide additional information that might be useful in resolving specific cost problems and should operate at minimum overhead cost.

PREV  |  NEXT  |  Article Index  |  HOME